Co-variation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: A new tool for tracing the change in weathering regime?

Boris G. Pokrovsky a, Vasileios Mavromatis b,⁎, Oleg S. Pokrovsky b

a Geological Institute, Russian Academy of Science, Pylchevsky Per, 7, 119017, Moscow, Russia
b Geosciences and Environment Toulouse (GET), CNRS, UMR 5563, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France

A R T I C L E I N F O
Article history:
Received 30 March 2011
Received in revised form 4 August 2011
Accepted 27 August 2011
Available online 3 September 2011
Editor: J.D. Blum

Keywords:
Magnesium
Carbon Isotopes
Dolomite
Precambrian
Weathering

A B S T R A C T
This study reports significant Mg isotopic variations in 32 samples of late Precambrian dolomites from various parts of the Siberian Platform exhibiting a range of δ13C from −10% to +6% (V-PDB). In the Ediacaran dolomites from the N and NE part of the Patom Paleobasin, a systematic increase of δ26Mg from −2.3 ± 0.2% to −0.8 ± 0.3% (DSM3) along with a δ13C decrease from +6% to −10% (δ26Mg = −0.072 × δ13C − 1.83) with a correlation coefficient of R² = 0.73 (n = 20) are observed. Within the stratigraphic sequence of Ediacaran and Ediacaran–Lower Cambrian transition successions, all positive C-isotope excursions co-vary with negative Mg-isotope shifts and vice versa. Other samples from the Siberian Platform lay on this regression with R² = 0.66 (n = 28) except for 4 samples, probably diagenetic dolostones, that exhibit a positive δ26Mg–δ13C correlation. The enrichment of sedimentary dolomite in heavy carbon and light Mg isotopes may be interpreted as a result of a complex interplay of contrasting sedimentation conditions (sea regression versus sea transgression regime) yielding different weathering regimes and relative contributions of carbonate versus silicate rocks. The enrichment of both oceanic water and carbonate sediments by 13Ca and 18O measurements and Mg fractionation in marine precipitation (Galy et al., 2002) have been shown to be efficient proxies for carbonate mineral precipitation environments (Galy et al., 2002; de Villiers et al., 2005; Buhl et al., 2007; Immenhauser et al., 2010), although both studies of natural systems and ab-initio calculations have shown limited temperature effect on Mg fractionation (Galy et al., 2002; Schauble, 2010). Until now, Mg-isotopes were used exclusively for contemporary sedimentary and weathering environments (Jacobson et al., 2010) and aimed at establishing the main laws of Mg fractionation in nature. Although these studies are still in progress, it seems important to study in parallel the historical and geological aspects of Mg isotope geochemistry, in particular, their significant potential for understanding past carbonate sedimentary conditions (Tipper et al., 2006a,b). The aim of this study is to assess the variation of Mg isotopic composition in Precambrian carbonate sediments from the Siberian Platform in order to test the co-variation between Mg- and C-isotopic excursions. We attempted explaining this link from the viewpoint of change in weathering...
sedimentary environment and weathering regime controlled by sea transgression/regression cycles.

2. Study sites and geological background

2.1. Sampling policy

A schematic map of sample locations is given in Fig. 1. Selected geological objects respond to the following two main requirements: 1) the widest range of $\delta^{13}C$ variations and 2) high magnesium concentration (i.e., dolomite or magnesite rock composition). These conditions are met for late Neoproterozoic (Ediacaran)successions in the Patom Paleobasin that encompasses a 700-km-long arc, the Baikal–Patom plateau of South Central Siberia, and they are traced by wells in adjacent parts of the Siberian Platform (Chumakov, 1959; Bobrov, 1979).

According to current geodynamic reconstruction, the Patom Basin during the Late Neoproterozoic was a broad bay at the south of the Paleoasian Ocean that touched the northern coasts of the Paleosiberian continent (Kheraskova et al., 2010). Glacial deposits described as Bolshoy Paleosiberian Ocean that touched the northern coasts of the Paleosiberian continent (Kheraskova et al., 2010). Glacial deposits described as Bolshoy Patom Formation (Chumakov, 1993, 2011; Chumakov et al., 2011). These strata correspond to the end Cryogenian (or Marinoan) interval of glaciation from More than 500 Ma to 580 Ma, although its precise dating is lacking (Fike et al., 2006; Le Guerroué et al., 2006).

The thicknesses and compositions of unit II and unit III differ in various parts of the paleobasin. In the deep part of the shelf and on the slope of the depression that occupied the central part of paleobasin, the thickness of units II and III reaches 2000 m and 1000 m, respectively, and the contribution of dolomite is minor. Closer to the coast, the thickness of unit II decreases to 400 m to 500 m, and dolomite becomes abundant. In unit III, dolomite only appears on the slope of the Aldan Shield (on the watershed of R. Chara and R. Tokko, borehole Ig, Table 1), where it builds up the upper 100 m of the Torgo Formation, which lower 150 m consist of limestone and marls with similar carbon isotope composition (Pokrovsky et al., 2006a).

The Ediacaran–Lower Cambrian boundary at the Patom Paleobasin is not exactly constrained. Dolostone–limestone–sandstone succession (Zherba/Seralakh Formations) that overlays the low-δ18O unit III was recently dated as Ediacaran (Russian Upper Vendian, (Khomentovskiy and Kochnev, 1999), although it was considered as Lower Cambrian in the past (Chumakov, 1959; Salop, 1964). At the NE of Patom Paleobasin the main part of carbonates from Zherba Formation exhibit δ13C values ranging within 0±2‰, although very low δ18O values (up to ~20.1‰) diagenetically altered samples were found among carbonate-bearing sandstones and siltstones (Pelechaty, 1998). At the B. Chuya River (North Part of Patom Paleobasin, series 2 in Fig. 1 and Table 1) the dolostones of Zherba Formation have relatively uniform δ13C=1±2‰ with positive excursions up to 6.1‰ (Pokrovsky and Chumakov, 2008). The “normal sea” δ13C=0±2‰ values are typical for carbonates of overlying transition Ediacaran–Lower Cambrian salt-bearing strata (Pelechaty, 1998; Pokrovsky et al., 2006a; Pokrovsky, 2009).

The existence of anhydrite veinlets in limestone and dolostone of the Torgo Formation (Pokrovsky et al., 2006a,b) suggests that the far northeastern part of the basin was subjected to an evaporative regime that was favorable for dolomite sedimentation (Warren, 2000). High δ18O values (up to 30‰ V-SMOW), low Mn and Sr contents and uniform δ13C values support a sedimentary origin of the dolostones that were drilled in borehole 1g (Table 1). The dolomites in the western part of unit II probably originated from diagenetic dolomitization of limestones as evidenced by high Mn contents and low δ18O values (Table 1). The origin of cap dolomites is controversial (see Hoffman, 2011 and Shields, 2005 for a review). Geological and geochemical features of cap dolomites, which appear to conformably sit upon glacioeustatic fluctuations of the Nichatka Formation (No Sh-100, Table 1) and the Bolshoy Patom Formation (No. 37/05, Table 1), may be explained by the discharge of thawing waters into a partly or completely isolated periglacial basin where dolomite sedimentation occurred according to the dorag model (Pokrovsky et al., 2010).

In addition to the Patom Paleobasin samples, samples of transition strata from the Ediacaran to Cambrian from southwest (R. Katanga region, site 4), north (R. Kotuykan, Anabar shield, site 5) and south (Talakan Rise, just to the north of Patom Paleobasin, site 3) of the Siberian Platform were analyzed. The dolomites from the Katanga region and the Talakan Rise are associated with salts and anhydrites. Two additional dolomite samples of the 500-m-thick Kamo Formation (131/3330, site 4) from the Katanga region and of the 500-m-thick Kotuykan Formation (112–88, site 5) from the Anabar Shield are Early Mezo-Proterozoic (1300–1500 Ma) in age. These samples represent a thick, monotonous dolomite succession of unknown (sedimentary or diagenetic) origin.

The sample of magnesite (122/3028, site 4) was collected from an unusual magnesite–anhydrite rock from the Oskoba Formation that formed in a sabkha (Pustylnikov et al., 1989). At the southwest of the
The reasons for abrupt changes in carbon isotope composition in Neoproterozoic carbonates are still uncertain. High-\(\delta^{13}C\) carbonates, which are widely distributed all over the world, certainly acquired their isotopic compositions at the sedimentation stage due to a high rate of bio-productivity and organic matter burial in sediments (Kauffman and Knoll, 1995; Jacobsen and Kauffman, 1999; Walter et al., 2000; Des Marais, 2001; Shields et al., 2002; Pokrovsky et al., 2006b). Another important factor of heavy carbonate formation may be the increased \(\delta^{13}C\) input to the ocean due to the exposure and weathering of carbonate platforms during sea level regressions (Shields et al., 2002). The reported negative correlation between \(\delta^{13}C\) and the \(^{87}Sr/^{86}Sr\) ratio in carbonates of unit II suggests the possibility of a \(\delta^{13}C\) decrease from strongly positive (−6 to 8‰) to moderately positive (2% to 4%) values during diagenesis (Pokrovsky et al., 2006b). The primary low \(\delta^{13}C\) signal in cap dolomites (unit I) is considered as almost certain, although there are numerous works considering the effect of sedimentation and diagenesis (Knoll et al., 1996; Hoffman et al., 1998; Grotzinger and James, 2000; Kennedy et al., 2001; Jiang et al., 2003; Shields, 2005; Hoffman et al., 2007; Pokrovsky et al., 2010).

Two hypotheses can be cited concerning the origin of the ultra-low \(\delta^{13}C\) carbonates (unit III). These carbonates are also known in Oman, Australia, and China as the global Shuram–Wonoka event. According to the first hypothesis, these carbonates were formed by sedimentation in seawater enriched by oxidized organic carbon (Melezhik et al., 2005; Fike et al., 2006; Le Guerroué et al., 2006; Pokrovsky et al., 2006a, 2006b; Jiang et al., 2007; Zhu et al., 2007; Melezhik et al., 2009; Le Guerroué and Cozzi, 2010). The second hypothesis proposes that these ultra-low \(\delta^{13}C\) carbonates are the products of diagenetic re-crystallization of carbonates in the presence of carbon dioxide of organic origin (Vinogradov,
2008; Knauth and Kennedy, 2009; Derry, 2010). However, the carbon isotope shift cannot be linked solely to dolomite formation because dolostones and limestones of unit III have similar $\delta^{13}C$ values (Pokrovsky et al., 2006a). The studied samples do not exhibit any $\delta^{13}C$–$\delta^{18}O$ correlation (Fig. 2). Normally, such a correlation is considered as a straightforward evidence of the diagenetic modification of C- and O-isotopic composition of sedimentary carbonates (Vinogradov, 2008; Knauth and Kennedy, 2009; Derry, 2010). Therefore, in accord with direct geological and mineralogical observations, diagenetic transformation of studied carbonates is considered to be negligible.

A typical feature of Late Neoproterozoic (850–545 Ma) is the very fast increase of $^{87}Sr/^{86}Sr$ ratio in seawater, up to ~0.001/100 Ma (Halperton et al., 2007, 2010; Shields, 2007), which is 10 times higher than the trend observed over the previous 1 billion years (Shields and Veizer, 2002; Shields, 2007). In the least altered high-Sr (up to 24,000 ppm) limestones of the central part of the Patom Paleobasin the ratio $^{87}Sr/^{86}Sr$ increases from 0.7073 to 0.7086 during Ediacaran (Pokrovsky et al., 2006a; Melezhik et al., 2009). This is in agreement with other Sr isotope data for the Neoproterozoic carbonates around the world (Halperton et al., 2010). The stratigraphic rise in $^{87}Sr/^{86}Sr$ from 0.7080 to 0.7086 was observed in several sections of low-$\delta^{13}C$ limestones of unit III (Melezhik et al., 2009). It is believed that the most likely cause of rapid $^{87}Sr/^{86}Sr$ increase in the Neoproterozoic ocean was the increase of silicate weathering which could have been stimulated by the appearance of soil biota (Shields, 2007) or organic processes (Melezhik et al., 2009).

Sr isotope data on dolomites (Table 1) are not representative for evolution of the sea water because diagenetic shifts of $^{87}Sr/^{86}Sr$ ratios in the dolomites are, commonly, more significant than those in the limestones due to much lower Sr contents in the dolomites. This difference between dolomite and limestone is rather narrow in most dolomites of NE part of Patom Paleobasin (Table 1). For example, low Sr content dolomite sample No. 1g/384 (Table 1) exhibits the same $^{87}Sr/^{86}Sr$ ratio as high-Sr limestones of unit III (not shown here).

3. Methods

Mg isotope composition of carbonate samples was constrained using a bulk digestion procedure. For this procedure, 10 μg to 20 μg of powdered carbonate sample was reacted with concentrated (16 M) bi-distilled HNO3 in Teflon reactors heated at 120°C in the clean room class A 10,000. This allowed maximal leaching of all Mg from dolomite or magnesite matrices, without interferences with silicate admixtures. No pre-leaching with diluted acid was performed because X-ray spectra indicate minor amounts of CaCO3 present in the samples (usually below detection limit) and thus the effect of admixtures in the dolomite/magnesite Mg pool is believed to be negligible. Magnesium separation from matrix elements (mainly Ca) was performed using the protocol defined by Teng et al. (2007), in which ~15 μg of Mg were evaporated to dryness and re-dissolved in 2 ml 1 N HNO3 solution. Later, samples were loaded onto Bio-Rad poly prop 10 ml columns containing AG50W-X12 resin.

Mg isotopes were measured with a Thermo-Finnigan 'Neptune' Multi Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) at GET (Toulouse, France). All solutions were prepared in 0.32 M HNO3 and were introduced into the Ar Plasma using a standard spray chamber. Instrumental mass fractionation effects were corrected using sample-standard bracketing, and all data are presented in delta notation with respect to DSM3 international reference material (Galy et al., 2001):

$$\delta^{26}Mg = \frac{\left(\frac{^{26}Mg}{^{24}Mg}\right)_{\text{sample}} - 1}{\left(\frac{^{26}Mg}{^{24}Mg}\right)_{\text{DSM3}}} \cdot 1000. \quad (1)$$

Analytical methods used to determine C, O, and Sr isotope compositions were published previously (Pokrovsky et al., 2006a, 2010). The $\delta^{13}C$ values are given in per mil versus V-PDB and $\delta^{18}O$ versus V-SMOW standards.

4. Results

Measured $\delta^{26}Mg$ and $\delta^{26}O$ values range from -2.43% to -0.47% and from -1.28% to -0.26%, respectively (Table 1). A good correlation between the two Mg isotopic ratios suggests a mass-dependent fractionation process (not shown here). The existing data do not suggest any dependence between Mg isotope composition and depositional age at the interval from ~1500 Ma to 530 Ma. Mesoproterozoic, Neoproterozoic and Low Cambrian dolomites, having "normal sea" $\delta^{13}C$ = 0 ± 2%, exhibit relatively small variations in $\delta^{26}Mg$ values from -1.62% to -2.29% and a mean $\delta^{26}Mg = -1.98 ± 0.23\%$, that is close to the present day carbonate sediment values (Galy et al., 2002; Young and Galy, 2004; Tipper et al., 2006a,b). The dolomites having anomalous high $\delta^{13}C$ values (5.5 ± 1.5%) can be divided, according to Mg isotopic composition, into two groups. The first group is composed of Neoproterozoic dolomites of the N and NE part of the Patom Paleobasin, having average value of $\delta^{26}Mg$ equal to 2.05 ± 0.31%. The second group is represented by dolomites of the Uluntuy formation, having $\delta^{26}Mg = 1.22 ± 0.27\%$. Ultra-low $\delta^{13}C$ (-10.0 ± 0.3%) dolomite of Torgo Formation exhibit values of $\delta^{26}Mg = 1.03 ± 0.31\%$. If the fractionation of Mg isotopes between dolomite and seawater was the same as at the present time, it means that the seawater equilibrated with dolomites of Torgo Formation should be at least 1% enriched in ^{26}Mg compared to the contemporary value.

No correlation is observed between Mg- and O-isotope compositions (Fig. 3A). In contrast, a strong negative correlation between $\delta^{26}Mg$ and $\delta^{13}C$ values is pronounced in the northern and northeastern part of the Patom Basin (site 1 and 2; Fig. 3B). It can be approximated as:

$$\delta^{26}Mg = -0.072 \cdot \delta^{13}C - 1.83; R^2 = 0.73, n = 20 \quad (2)$$

Within the stratigraphic sequence, all positive C-isotope excursions coincide with negative Mg-isotope shifts and vice versa as it is illustrated in Fig. 4.

Most analyzed samples follow the same trend (Fig. 3B), and the inclusion of most other samples from the Siberian Platform does not appreciably affect this regression with $R^2 = 0.66$ (n = 28). The exception is four high-$\delta^{13}C$ dolomites from the Uluntuy Formation of the western part of the Patom Paleobasin (Fig. 1) that yield a positive $\delta^{26}Mg$–$\delta^{13}C$ correlation (Fig. 3B).
5. Discussion

The correlation between $\delta^{26}\text{Mg}$ and $\delta^{13}\text{C}$ is an unforeseen and novel result. It is widely accepted that the main reasons for $\delta^{13}\text{C}$ variation in sedimentary rocks are separation and secondary mixing of carbon from "organic" and "carbonate" reservoirs. However, the content of "organic" magnesium (linked to organic matter) both in the ocean and in the diagenetic fluids is negligible compared to carbonate magnesium. Oxidation of organic matter, even if it occurs during diagenesis of carbonate sediments rich in organic carbon leading to their re-crystallization and $\delta^{13}\text{C}$ decrease, should not bring about a significant shift in Mg isotopic composition at the sedimentation stage. Therefore, the observed correlation may be linked to post-sedimentary (diagenetic) transformations and mineral re-crystallization, and/or actual mineral sedimentation conditions of the Patom Paleobasin. These two possible scenarios are discussed below.

In the case of mineral precipitation from aqueous fluid at low temperatures (diagenetic hypothesis), dolomite is depleted in ^{26}Mg by 2‰ to 2.6‰ (as confirmed by recent ab anitio calculations, Rustad et al., 2010), whereas clay minerals are enriched in ^{26}Mg by 0‰ to 1.25‰ with respect to the fluid (Higgins and Shrag, 2010). The diagenetic solution may become enriched in ^{26}Mg as a result of dolomite precipitation in a restricted water body following a Raleigh fractionation mechanism, or as a result of Mg release due to clay mineral re-crystallization and dehydration.

The Raleigh fractionation may occur in a restricted (water/rock < 1) volume of the pore fluid (Higgins and Shrag, 2010). However, a typical amount of early diagenetic dolomite in sediments does not exceed 10% to 15% (Warren, 2000). A 100-m-thick suite of almost pure dolomite may be produced during diagenesis only at very high water/rock (W/R) ratios (>10, or rather >100). A high W/R ratio suggests an almost unlimited external source of Mg that contradicts Raleigh model conditions. According to the second scenario, dolomitization could occur due to massive dehydration and extraction (squeezing) of Mg-rich water from the clay layers during burial diagenesis. In this case, the dolomites of unit III could not preserve a high $\delta^{18}\text{O}$, close to the primary $^{87}\text{Sr}/^{86}\text{Sr}$ ratio and low Mn (Table 1). Within this scenario, it is difficult to explain why only the upper part of unit III at the far northeast of the basin underwent dolomitization. There are very few to no clay deposits in the eastern part of the paleobasin. Therefore, we consider the diagenetic enrichment in ^{26}Mg of ultra-low $\delta^{13}\text{C}$ dolomites from unit III very unlikely.

For one series, however, the diagenetic process may become an important factor controlling Mg isotopic composition. Thus, four samples of Uluntuy suite (Ul V2) do not fit the overall $\delta^{13}\text{C}$–$\delta^{26}\text{Mg}$ trend (Fig. 3B). In fact, these 4 samples build up a separate positive $\delta^{26}\text{Mg}$–$\delta^{13}\text{C}$ correlation (Fig. 3B). These samples were collected from relatively thin (10 m to 15 m) horizons of dark gray dolomites hosted in black bituminous limestone that is predominantly in the Uluntuy Formation. The dolomites have relatively low $\delta^{18}\text{O}$ values (21.3‰ to 21.8‰) and high Mn content (638 ppm to 1212 ppm) indicating strong diagenetic transformation that probably caused their discordance. Elevated values of $\delta^{26}\text{Mg}$ in these samples may stem from organic matter and clay participation in the dolomitization process.
According to the simplified mass balance equation

$$\delta^{13}C_T = F_{c-carb}\delta^{13}C_{carb} + F_{c-arg}\delta^{13}C_{arg}$$ (3)

the sedimentary hypothesis implies that the carbon isotope composition of sedimentary carbonates ($\delta^{13}C_{carb}$) depends on the following 3 parameters: 1) fractions of carbonate carbon (F_{c-carb}) and organic carbon ($F_{c-arg} = 1 - F_{c-carb}$) buried in sediment; 2) carbon isotope discrimination ($\Delta\delta^{13}C$) between carbonates and organic matter ($\Delta\delta^{13}C = \delta^{13}C_{carb} - \delta^{13}C_{org}$); and 3) total (weighted-average) carbon isotope composition in surface environments ($\delta^{13}C_T$) (Kump et al., 1999; Des Marais, 2001; Ripperdan, 2001; Shields et al., 2002 and references therein). Accordingly:

$$\delta^{13}C_{carb} = \delta^{13}C_T + \left(F_{c-arg}\Delta\delta^{13}C\right).$$ (4)

However, a similar equation cannot be used for magnesium isotopes because the fraction of organic Mg in sediments is negligible compared to carbonate Mg and does not exceed 0.01 (assuming 8000 ppm Mg in oceanic plankton (Savenko, 1988) and 0.3% organic carbon content in oceanic sediments). Therefore, variations of the $\delta^{26}Mg_{carb}$ should depend on other factors.

At the present time, it is believed that the main sink of Mg in the ocean responsible for removing 80–87% of Mg is hydrothermal exchange between the seawater and oceanic crust whereas carbonate precipitation removes the remaining 10% of Mg pool (Elderfield and Schultz, 1996). Various oceanic basalts and peridotites exhibit homogeneous Mg isotope composition with average value $\delta^{26}Mg_{sw} = -0.25 \pm 0.07\%$ (Teng et al., 2010), about 0.5% higher than the seawater ($\delta^{26}Mg_{seaw} = -0.82\%$), which is 0.3–0.4% heavier than the weighted global Mg-isotope riverine flux to ocean ($\delta^{26}Mg_{org} = -1.09\%$, Tipper et al., 2006a,b). This difference between $\delta^{26}Mg_{seaw}$ and $\delta^{26}Mg_{org}$ may occur as a result of 9% of dolomite precipitation with $\delta^{26}Mg = -2.5–2.0\%$, or due to Mg isotope fractionation during seawater–ocean crust interaction which is poorly known (Tipper et al., 2006b). If hydrothermal fractionation of Mg isotopes is negligible, a variation of $\delta^{26}Mg$ values in seawater through geologic time may depend on: 1) the proportion of hydrothermal to total Mg sink (F_{seaw}/F_{tot}), or 2) the change in riverine Mg-isotope flux (Tipper et al., 2006b). Mass balance calculation shows that the decrease of F_{seaw}/F_{tot} by a factor of 2 (from 0.9 to 0.4–0.5) should enrich the seawater in $\delta^{26}Mg$ by ~1‰ (Tipper et al., 2006b). However, such drastic change of hydrothermal activity at the ocean floor or the dolomite sedimentation processes seem very unlikely during Ediacaran which lasted only about 90 Ma. The hydrothermal processes in the ocean are linked to spreading. The rate of spreading in Neo-proterozoic is not well constrained. There is no reason to suggest that it was lower than at the present time: the Rodinia continent disintegrated 800–850 Ma ago and during all Neo-Proterozoic the widening of newly formed oceans occurred (Kheraskova et al., 2010). Although this enlargement probably was discontinuous (Kheraskova et al., 2010), the link of climate and atmospheric CO2 content increase known to strongly enhance silicate weathering rates (Dessert et al., 2003, 2009).

Considering the long residence time of calcium in the modern ocean (~106 years), temporal variations in $\delta^{44}Ca_{sw}$ reflect changes in input of calcium to the ocean from weathering and its removal by carbonate sedimentation (Kasemann et al., 2005; Silva-Tamayo et al., 2010). Indeed, $\delta^{44}Ca$ and $\delta^{13}C$ values decrease when weathering input exceeds sedimentary output ($F_{sw}/F_{sed}>1$) and increase when $F_{sw}/F_{sed}<1$.

It is difficult to concede a deficit of Mg in the ocean, taking into account high contents of Mg in seawater and a small amount of Mg-bearing sediments compared to Ca-bearing sediments. We hypothesize that Mg isotope variations in the Late Proterozoic dolomite mainly depend on the predominant type of weathering rocks and the weathering regime, whereas the observed anti-correlation between $\delta^{26}Mg$ and $\delta^{13}C$ is a result of synchronous but not directly linked processes.

It has been shown that the period of high-$\delta^{13}C$ sedimentation coincides with glacioeustatic regressions (Kump et al., 1999; Ripperdan, 2001; Shields et al., 2002) and could be a consequence of increased $\delta^{13}C$ input due to the exposure and weathering of carbonate platforms during sea-level fall. There is little doubt that the high-$\delta^{13}C$ Neoproterozoic carbonates of the Patom Paleobasin (Pokrovsky et al., 2006b), western Mongolia and some other regions (Shields et al., 2002) accumulated under sea regression conditions. At the low ocean level, the carbonate platforms and coastal planes are exposed and subjected to intense weathering. During this time, Mesoproterozoic dolostones that are widespread on the Siberian Platform may become a source of low-$\delta^{26}Mg$ to the ocean. As a result, the ocean would be depleted in $\delta^{26}Mg$ and high-$\delta^{13}C$ carbonates would accumulate during a regression.

Low-$\delta^{13}C$ carbonates of the Patom Paleobasin accumulated during sea transgression (Chumakov, 1959, 1979; Bobrov, 1979; Pokrovsky et al., 2006a,b). At a high ocean level, carbonate platforms and coastal planes should be flooded, and the carbonate weathering could be reduced relative to the weathering of igneous and metamorphic silicate rocks. The latter supply the ocean with magnesium that is approximately 1‰ enriched in the heavy isotope ($\delta^{26}Mg$) compared to carbonates (Galy et al., 2002; Young and Galy, 2004; Tipper et al., 2006a,b). The main cause for this enrichment is that silicate weathering can fractionate Mg isotopes (Tipper et al., 2006a,b; Brenot et al., 2008; Pogge von Strandmann et al., 2008) such that the weathering products are enriched in $\delta^{26}Mg$ by ~0.5‰ compared to the bedrock. This is contrast to carbonate weathering that does not fractionate Mg isotopes (Jacobson et al., 2010) although the difference of $\delta^{26}Mg$ between silicate and carbonate rocks is as high as 1.5–2.0‰. As a result, the enrichment of both oceanic water and carbonate sediments by $\delta^{26}Mg$ could occur during transgression and would coincide with sedimentation of low-$\delta^{13}C$ carbonates. Climate change may be another factor responsible for specific sedimentary environments during sea transgression. Gas-hydrate destabilization due to climate warming is a possible cause of seawater enrichment by the light carbon isotope and sedimentation of both moderately low-$\delta^{13}C$ cap dolomites (Kennedy et al., 2001) and ultra-low carbonates of unit III (Pokrovsky et al., 2006a,b). At the same time, climate warming could be a cause of decreasing riverine $\delta^{26}Mg$ values due to a significant increase in silicate weathering rate with temperature, precipitation and atmospheric CO2 content increase known to strongly enhance silicate weathering rates (Dessert et al., 2003, 2009).

Available Sr isotope data do not contradict to the suggested link between the Mg isotope composition and the weathering regime. In high-Sr limestones of the Patom Paleobasin Sr/$\delta^{44}Sr$ ratios rise to 0.7076 at the upper part of unit II (high-$\delta^{13}C$, low-$\delta^{26}Mg$) the unit III (low-$\delta^{13}C$, high-$\delta^{26}Mg$). Upward in the section, the decreasing of $\delta^{26}Mg$ values from ~0.89‰ at the top of unit III to ~1.80‰ at the Ediacaran–Lower Cambrian transition strata is correlated with slight decrease of 87Sr/$\delta^{44}Sr$ from 0.7086 to 0.7083 (Fig. 4). The presence of anhydrite and halite in the Ediacaran–Lower Cambrian transition strata of Patom Paleobasin and the biggest part of the Siberian Platform witnesses the regressive regime of sedimentation.
6. Conclusions

Until recently, Mg isotope fractionation has been investigated either in experiments or on contemporary or very young geological objects. Our study of ancient (>500 Ma) sedimentary dolomites produced the following unexpected result: a significant negative correlation of Mg and carbon isotopes that could not be anticipated given different geochemical properties of these two elements. Although there is no single and straightforward interpretation of the obtained results, reporting them should stimulate further research.

Most likely, the change in Mg isotope composition in carbonate sediments on a million-year scale is controlled by weathering of carbonate and sediments and processes of weathering and helpful comments of Adrian Immenhauser and an anonymous referee. This work was supported by MC ITS DELTA-MIN (ITN-2008-215360), MC RTN GRASP-CO2 (MRTN-CT-2006-035868), Financial support from EPOV and INTERVIE INSU programs, LIA LEAGE (France) and to be linked solely to weathering. Burial of organic matter in sediments is also linked to weathering. Burial of organic matter in sediments could not be anticipated given different geothermometric and ocean hydrology mechanisms such as stratification of sedimentation basins and bottom water temperatures. As a result, observed anti-correlation between δ26Mg and δ13C does not necessarily prove the existence of functional links in mechanisms controlling the behavior of these two isotopic systems. It can be a result of synchronous (simultaneous) but not directly linked processes.

Acknowledgments

We would like to thank Jerome Cheneffle for his assistance with the MC-ICP-MS analyses in Toulouse. We greatly appreciate the constructive and helpful comments of Adrian Immenhauser and an anonymous reviewer.

References

